
Agilent Technologies

N2101A Option H10
5 Gb/s Bit Error Rate Tester

User’s Guide

ii

Notices
© Agilent Technologies, Inc. 2007

No part of this manual may be reproduced in any
form or by any means (including electronic stor-
age and retrieval or translation into a foreign lan-
guage) without prior agreement and written
consent from Agilent Technologies, Inc. as gov-
erned by United States and international copy-
right lays.

Manual Part Number
N2101-90001

Edition
January 2007
Printed in USA

Agilent Technologies, Inc.
Digital Signal Analysis Division
1400 Fountaingrove Parkway
Santa Rosa, CA 95403, USA

Warranty
The material contained in this document is pro-
vided “as is,” and is subject to being changed,
without notice, in future editions. Further, to the
maximum extent permitted by applicable law,
Agilent disclaims all warranties, either express or
implied, with regard to this manual and any infor-
mation contained herein, including but not limited
to the implied warranties of merchantability and
fitness for a particular purpose. Agilent shall not
be liable for errors or for incidental or consequen-
tial damages in connection with the furnishing,
use, or performance of this document or of any
information contained herein. Should Agilent and
the user have a separate written agreement with
warranty terms covering the material in this docu-
ment that conflict with these terms, the warranty
terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this
document are furnished under a license and may
be used or copied only in accordance with the
terms of such license.

LZW compression/decompression: Licensed
under U.S. Patent No. 4,558,302 and foreign
counterparts. The purchase or use of LZW graph-
ics capability in a licensed product does not
authorize or permit an end user to use any other
product or perform any other method or activity
involving use of LZW unless the end user is sepa-
rately licensed in writing by Unisys.

Restricted Rights Legend
If software is for use in the performance of a U.S.
Government prime contract or subcontract, Soft-
ware is delivered and licensed as “Commercial
computer software” as defined in DFAR 252.227-
7014 (June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted com-
puter software” as defined in FAR 52.227-19
(June 1987) or any equivalent agency regulation
or contract clause. Use, duplication or disclosure
of Software is subject to Agilent Technologies’
standard commercial license terms, and non-DOD
Departments and Agencies of the U.S. Govern-
ment will receive no greater than Restricted
Rights as defined in FAR 52.227-19(c)(1-2) (June
1987). U.S. Government users will receive no
greater than Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR 252.227-7015
(b)(2) (November 1995), as applicable in any tech-
nical data.

Safety Notices
CAUTION
Caution denotes a hazard. It calls attention to a
procedure which, if not correctly performed or
adhered to, could result in damage to or destruc-
tion of the product. Do not proceed beyond a cau-
tion sign until the indicated conditions are fully
understood and met.

WARNING
Warning denotes a hazard. It calls attention to
a procedure which, if not correctly performed or
adhered to, could result in injury or loss of life. Do
not proceed beyond a warning sign until the indi-
cated conditions are fully understood and met.

Trademark Acknowledgements
Microsoft is a U.S. registered trademark of
Microsoft Corporation.

Windows and MS Windows are U.S. registered
trademarks of Microsoft Corporation.

Instrument Markings
The CE mark is a registered trademark of
the European Community.

Contents

Contents-1

1 General Information

Introduction 1–2
Electrostatic Discharge Information 1–4
Connector Care 1–6
Returning the N2101A to Agilent 1–8

2 Installation

Introduction 2–2

3 Using the Control Panel

Introduction 3–2
Quick Confidence Check 3–8
Measuring Bit Error Rate 3–11
Upgrading the Instrument’s Firmware 3–14

4 Programming

Introduction 4–2
Configuring the Traffic Generator 4–3
Configuring the Signal Receiver 4–7
Configuring the Trigger Outputs 4–9
Making Measurements 4–10
Generating Traffic Errors 4–14
Jitter Insertion 4–15
Obtaining the N2101A VISA Handle 4–16
DLL API Reference 4–18
Data Types and Structures 4–26

5 Specifications

Specifications 5–2

Contents-2

Contents

1

Introduction 1-2
Electrostatic Discharge Information 1-4
Connector Care 1-6
Returning the N2101A to Agilent 1-8

General Information

1-2

General Information
Introduction

Introduction

The N2101A BERT implements a full function Bit Error Rate testing system in
a double-wide 3U PXI module. It consists of a high accuracy clock source, data
pattern generator and error detector.

N O T E Please note that this former PXIT product (PX2000-336) is now part of Agilent
Technologies. Although most references have been changed to Agilent
Technologies, this manual may contain some references to PXIT Inc.

The N2101A provides the following features:

• Differential data generation and analysis
• Standard data patterns PRBS 2n-1, n = 7, 9, 10, 11, 15, 23, 31; K28.5, K28.7,

CRPAT
• User specified patterns up to 256 kbits
• Internal clock rates for the following time bases: - SONET, GBE, Fiber

Channel, SONET FEC for rates up to 6 Gb/s.
• External clock inputs for Tx and Rx
• Clock trigger out
• Pattern trigger out
• Data pattern generation - industry standard or user selectable.
• Bit error measurements: Count rate for the following data rates:

1.0625 Gb/s, 1.25 Gb/s, 2.125 Gb/s, 2.48832 Gb/s (OC-48/STM-16),
2.50 Gb/s, 4.25 Gb/s, 5.00 Gb/s.

• Single error and error rate injection.
• Auto-eye crossing search function with user settable BER threshold from

10–3 to 10–10.
• Total error counts over definable time or number of bits.
• Continuous bit error rate measurement (real time error rate counter) with

historical display of when errors and loss-of-sync events ocurred.
• Internal frequency modulation of transmitted signal
• Eye opening measurement at defined error rates
• Display of bathtub curve

1-3

General Information
Introduction

C A U T I O N The N2101A is shipped in materials which prevent damage from static. The
module should only be removed from the packaging in an anti-static area
ensuring that correct anti-static precautions are taken.

W A R N I N G This product is NOT tested for use in medical or clinical applications.

W A R N I N G No operator serviceable parts inside. Refer servicing to qualified

service personnel.

W A R N I N G Use appropriate caution when using Agilent products for testing

lasers.

W A R N I N G Laser Safety Notice The N2101A is used to measure optical signals.

When connecting and disconnecting optical cables or equipment, all

optical sources MUST be disabled. Failure to take proper safety

precautions may result in eye damage. All un-used optical ports MUST

be covered when not in use to prevent light leakage or contamination.

C A U T I O N Do not operate the N2101A without attenuators attached to the output
connectors. This will degrade the N2101A's performance over time, and will
void the Agilent factory warranty.

1-4

General Information
Electrostatic Discharge Information

Electrostatic Discharge Information

C A U T I O N Electrical channel input circuits and the trigger input circuit can be damaged
by electrostatic discharge (ESD). Therefore, avoid applying static discharges
to the front-panel input connectors. Prior to connecting any coaxial cable to
the connectors, momentarily short the center and outer conductors of the
cable together. Avoid touching the front-panel input connectors without first
touching the frame of the instrument. Be sure that the instrument is properly
earth-grounded to prevent buildup of static charge. Wear a wrist-strap or heel-
strap.

Electrostatic discharge (ESD) can damage or destroy electronic components.
All work on electronic assemblies should be performed at a static-safe work
station. The following figure shows an example of a static-safe work station
using two types of ESD protection:

• Conductive table-mat and wrist-strap combination.
• Conductive floor-mat and heel-strap combination.

Figure 1-1. Static-safe Work Station

1-5

General Information
Electrostatic Discharge Information

Both types, when used together, provide a significant level of ESD protection.
Of the two, only the table-mat and wrist-strap combination provides adequate
ESD protection when used alone. To ensure user safety, the static-safe acces-
sories must provide at least 1 MΩ of isolation from ground. Refer to Table 2 for
information on ordering static-safe accessories.

W A R N I N G These techniques for a static-safe work station should not be used

when working on circuitry with a voltage potential greater than

500 volts.

Table 2. Static-Safe Accessories

Agilent Part
Number

 Description

9300-0797 Static control mat, 0.6 m x 1.2 m (2 ft x 4 ft) and 4.6 cm (15 ft) ground wire. (The wrist-
strap and wrist-strap cord are not included. They must be ordered separately.)

9300-0980 Wrist-strap cord 1.5 m (5 ft).

9300-1367 Wrist-strap, adjustable, without cord.

9300-1126 ESD heel-strap

1-6

General Information
Connector Care

Connector Care

Advances in measurement capabilities make connectors and connection tech-
niques more important than ever. Observing simple precautions can ensure
accurate and reliable measurements.

Handling and storage

• Keep connectors clean
• Extend sleeve or connector nut
• Use plastic endcaps during storage
• Do not touch mating plane surfaces
• Do not set connectors contact-end down

Visual inspection

• Inspect all connectors carefully before every connection
• Look for metal particles, scratches, and dents
• Do not use damaged connectors

Cleaning

• Clean with compressed air first
• Clean the connector threads
• Do not use abrasives
• Do not get liquid onto the plastic support beads

Making connections

• Use connector savers
• Align connectors carefully
• Make preliminary connection lightly
• To tighten, turn connector nut only
• Do not apply bending force to connection
• Do not over tighten preliminary connection
• Do not twist or screw in connectors
• Use a torque wrench, and do not tighten past the "break" point of the torque

wrench

1-7

General Information
Connector Care

3.5 mm and SMA Connectors

Precision 3.5 mm microwave connectors are compatible with an SMA connec-
tor within its specification. Due to the variable quality of the SMA connector,
mating with an SMA can sometimes cause severe damage to the 3.5 mm con-
nector. You can use SMA connectors if special care is taken when mating the
connectors, and all connectors are undamaged and clean. Before each use,
check the mechanical dimensions of all connectors with a connector gauge to
make sure that the center conductors are positioned correctly.

C A U T I O N A male SMA connector pin that is too long can smash or break the delicate
fingers on the precision 3.5 mm female connector.

C A U T I O N Some precision 3.5 mm female connector fingers are very tight and can pull the
center pin of their mates out past specifications when the connectors are
disconnected. If such a male pin is inserted into a female connector, it can
cause considerable damage by pushing the female center conductor back too
far. Be aware of this possibility and check all connectors before mating them
again.

1-8

General Information
Returning the N2101A to Agilent

Returning the N2101A to Agilent

The instructions in this section show you how to properly package the instru-
ment for return to an Agilent Technologies service office. If the instrument is
still under warranty or is covered by an Agilent maintenance contract, it will
be repaired under the terms of the warranty or contract. If the instrument is
no longer under warranty or is not covered by an Agilent maintenance plan,
Agilent will notify you of the cost of the repair after examining the unit.

When an instrument is returned to an Agilent service office for servicing, it
must be adequately packaged and have a complete description of the failure
symptoms attached.

When describing the failure, please be as specific as possible about the nature
of the problem. Include copies of any instrument failure settings, data related
to instrument failure, and error messages along with the instrument being
returned.

Please notify the service office before returning your instrument for service.
Any special arrangements for the instrument can be discussed at this time.
This will help the Agilent service office repair and return your instrument as
quickly as possible.

Call Center

For technical assistance, contact your local Agilent Call Center. In the Ameri-
cas, call 1 (800) 829-4444. In other regions, visit http://www.agilent.com/find/
assist. Before returning an instrument for service, you must first call the Call
Center at 1 (800) 829-4444.

Preparing the product for shipping

1 Write a complete reason for returning the product and attach it to the
instrument. Include any specific performance details related to the problem.

2 Pack the product. Use original packaging or comparable. Original materials are
available through any Agilent office. Or, follow these recommendations:

• Use a double-walled, corrugated cardboard carton of 159 kg (350 lb) test
strength. The carton must allow approximately 7 cm (3 inches) on all sides

1-9

General Information
Returning the N2101A to Agilent

of the kit for packing material and be strong enough to accommodate the
weight of the kit.

• Surround the kit with approximately 7 cm (3 inches) of packing material, to
protect the kit and prevent it from moving in the carton. If packing foam is
not available, the best alternative is S.D-240 Air Cap™ from Sealed Air Cor-
poration (Commerce, California 90001). Air Cap looks like a plastic sheet
filled with air bubbles. Use the pink (antistatic) Air Cap™ to reduce static
electricity. Wrapping the kit several times in this material will protect the kit
and prevent it from moving in the carton.

3 Seal the carton with strong nylon adhesive tape.

4 Mark the carton “FRAGILE, HANDLE WITH CARE”.

5 Retain copies of all shipping papers.

1-10

General Information
Returning the N2101A to Agilent

2

Introduction 2-2
Step 1. Inspect the Shipment 2-2
Step 2. Install the Instrument Driver Software 2-3
Step 3. Install the N2101A 2-3

Installation

2-2

Installation
Introduction

Introduction

The PXI chassis can be controlled using either embedded PXI controller or an
external PC using a PCI - cPCI/PXI remote bridge (such as the NI MXI-4 prod-
uct). If an external PC is used, the PC must meet the following specification:

• Windows 2000 or XP operating system
• 128 MB RAM
• Pentium, 133 MHz or greater

C A U T I O N Do not operate the N2101A without attenuators attached to the output
connectors. This will degrade the N2101A's performance over time, and will
void the Agilent factory warranty.

N O T E When using an external PC, if the sequence of the following installation steps
is not followed, the PC BIOS will not be able to locate the instruments in the
PXI chassis.

Your new N2101A is compatible with the current version of the control panel
software. If your PXI chassis includes older N2101A (PX2000-336) instru-
ments, you may need to upgrade the instrument’s firmware as described in
“Upgrading the Instrument’s Firmware” on page 3-14.

Step 1. Inspect the Shipment

1 Inspect the shipping container and kit for damage. Keep the shipping container
and cushioning material until you have inspected the contents of the shipment
for completeness and have checked the kit mechanically and electrically.

2 Locate the shipping list. Verify that you have received all of the items listed.

To contact Agilent Technologies for technical assistance, contact your local
Agilent Call Center. In the Americas, call 1 (800) 829-4444. In other regions,
visit http://www.agilent.com/find/assist. Before returning an instrument for
service, you must first call the Call Center at 1 (800) 829-4444.

2-3

Installation
Step 2. Install the Instrument Driver Software

3 Do not install the N2101A in the PXI chassis at this time.

W A R N I N G Ensure that the PXI chassis is connected to the specified power source

using the correct power cord (noting country of use).

W A R N I N G Ensure that the PXI chassis containing the N2101A provides adequate

earth grounding.

W A R N I N G Ensure that the air supply to the chassis is working correctly. The

N2101A requires an optimal air flow within the chassis. It is

recommended to regularly change filters on PXI Chassis.

Step 2. Install the Instrument Driver Software

1 If using an external PC and remote bridge, turn the PXI chassis power off. If
using an embedded controller, remove all N2101A modules from the chassis.

N O T E This step ensures that the PC BIOS will be able to locate the instruments in the
PXI chassis.

2 Log onto the PC with administrator privileges, so that you can install the
software.

3 Go to the Agilent website: www.agilent.com/find/pxit

4 Click on the Technical Support link and then the Drivers link.

5 Download the latest version of the following driver:

Agilent N2101A (PX2000-336) BERT Driver

6 Once the download has completed, run the file, N2101AInstall.exe. During the
installation, you will enter the user name and organization. Select the all users
option to ensure the software is available to all users of the PC. Click Next.

7 When install is finished click Finish. The N2101A control software is now
installed.

Step 3. Install the N2101A

1 With the PC and chassis powered off, install the N2101A module in an available
slot in a PXI chassis.

2-4

Installation
Step 3. Install the N2101A

2 Power on the PXI chassis and wait for the power up sequence to complete.

3 Turn on the PC.

If needed, you can use Windows Device Manager to determine if the instru-
ments have been correctly identified by the BIOS. There should be an NI-VISA
PXI Devices entry with your N2101A/PX2000 series instrument as shown in
the following figure.

3

Introduction 3-2
To start the Control Panel 3-5
Powering Off the Instrument 3-5
User Patterns 3-6

Quick Confidence Check 3-8
Measuring Bit Error Rate 3-11
Upgrading the Instrument’s Firmware 3-14

Using the Control Panel

3-2

Using the Control Panel
Introduction

Introduction

This chapter describes how to start and configure the Windows Control Panel
application. All aspects of the N2101A can be controlled through the Control
Panel. Use the top row of buttons to configure the module, I/O, and connect to
the module. The mode of operation of the N2101A is controlled using the list
box in the top left corner of the main form.

Figure 3-1. Control Panel

Operating
mode

Continuous
BER Display

BERT configuration

Status
information

Clock and data status

3-3

Using the Control Panel
Introduction

C A U T I O N Do not operate the N2101A without attenuators attached to the output
connectors. This will degrade the N2101A's performance over time and will
void the Agilent factory warranty.

In continuous test mode, select Current to display the continuous BER results
as shown in Figure 3-1. Or, select History to for a scrolling display of bit errors
and out-of-sync conditions that is updated in real-time as shown in Figure 3-2.
Controls are also available to stop, manually scroll, and scale the time base of
the display, without interrupting the current test. Clicking Live Update
resumes automatic real-time scrolling.

Figure 3-2. Historical Display of Bit Errors

The running test time is derived from current time minus the test start time in
the display. Cumulative Error Counts, BER, and Sync Time are also displayed.
Clicking History to Clipboard captures any non-zero bit error count time inter-
vals, or LOS conditions, in ASCII readable form, as shown in the following
example:

3-4

Using the Control Panel
Introduction

Test Start Mon Sep 18 15:42:31 2006
Test Time 00:03:54
Resolution 1 sec
00:00:06 33
00:00:08 33
00:00:12 66
00:00:16 132
00:00:17 66
00:01:28 LOS
00:01:29 LOS
00:03:13 4

In the Control Panel, click Config to select the N2101A and configure it for
measurements. The Rx Clock Source External selection is unsupported. Rx
Clock Source must be set to Internal, and it will track the Tx Clock Source pro-
vided (for example, Internal or External).

Figure 3-3. Configuration dialog box

Select N2101A
module

Set as
defaults

3-5

Using the Control Panel
To start the Control Panel

To start the Control Panel

1 Click the Window’s Start menu.

2 Click All Programs, PXIT, and then PX2000-336.

3 Click PX2000-336 Control Panel.

4 Click the Config button, which is located at the top of the Control Panel.

5 Select the Active device (N2101A module) using the drop-down list.

6 Set all other configuration settings as needed.

Powering Off the Instrument

1 Close the Control Panel.

2 Soft power down the PC.

3 Switch off power to PXI chassis.

3-6

Using the Control Panel
User Patterns

User Patterns

You can use your own user patterns with the N2101A. The Control Panel appli-
cation includes a user pattern editor, and you also save and import text pat-
tern-files to and from the N2101A. To use user patterns, open the
Configuration dialog box, and select User from the Pattern Type list; the
N2101A immediately begins generating and synchronizing to any specified
pattern.

Figure 3-4. Pattern Type set to User

Click Edit to view the User Pattern Script Editor shown in Figure 3-5. The edi-
tor uses an abbreviated script syntax, which is explained in the editor. Use the
Script field to enter the syntax for the bit pattern. Click Set Pattern to verify
the syntax and display the resulting pattern of bits in the Pattern field.

Figure 3-5. User Pattern Editor

3-7

Using the Control Panel
User Patterns

User pattern lengths must meet the following criteria:

• Integers from 1 to 2048
• Even numbers up to 4,096
• Multiples of 4 up to 8,192
• Multiples of 8 up to 16,384
• Multiples of 16 up to 32,764
• Multiples of 32 up to 65,536
• Multiples of 64 up to 131,072 (or 217).

3-8

Using the Control Panel
Quick Confidence Check

Quick Confidence Check

Physical loopback test allows you to verify the basic functionality of the instru-
ment.

1 In the Control Panel, select the Time Window or Continuous from the drop down
menu.

2 Click the Config button.

3 Select the following typical settings:

Bit Rate . 1.0625Gb/s (or a suitable frequency)
Pattern Type . PRBS
PRBS Length . PRBS7

4 Set Tx and Rx clock sources to internal.

5 Close the dialog box.

C A U T I O N Do not remove the attenuators from the transmitter output connectors.

6 Install loopback cables between the transmiter and receiver connectors. This
should be done either using both the differential signal pairs or by making a
single Tx to Rx connection and terminating the unused connectors with a 50
ohm cap.

7 Click the Clock Align to set the Rx phase delay to the center of the eye. The
alignment process is complete when the phase delay values stop incrementing.

8 Click on the Start and the form shown in Figure 3-6 on page 3-9 should appear.
Check that no errors are being reported.

3-9

Using the Control Panel
Quick Confidence Check

Figure 3-6. BER Screen with Zero Errors

9 Click the Config button.

10 Inject a single error as follows. Select single burst Error Insert from the
configuration panel. Set the Count to 1.

Figure 3-7. Single Error Injection (Configuration Panel)

11 Click Set once.

12 Close the dialog box.

13 Verify correct insertion and error detection on the following screen.

3-10

Using the Control Panel
Quick Confidence Check

Figure 3-8. BER Screen with a Single Error Detected

3-11

Using the Control Panel
Measuring Bit Error Rate

Measuring Bit Error Rate

You can use the Control Panel to measure Bit Error Rate.

1 In the Control Panel, select Continuous from the drop down menu. Or, you could
select Time Window and set the Window Size to the desired time window as well
as set the units to μs, ms or s.

2 Click the Config button.

3 Select the following settings:

Bit Rate 1.0625Gb/s,1.25Gb/s, 2.125Gb/s, 2.48832Gb/s, 2.5Gb/s, 4.25Gb/s (Default),
5.0Gb/s, External.

Pattern Select data pattern sent on the transmit signal, and synchronized to on the
receive signal. Each pattern type has further parameters specific to its type.
PRBS (default), DC, User.

Pseudo Random
Bit Sequence
(PRBS)

PRBS pattern lengths: 27–1 (default), 29–1, 211–1, 215–1, 223–1, 231–1.

Tx clock source Can be external or internal. Internal uses the BERT internal clock (default).
External uses a clock connected from an external source to the BERT.

Rx Clock Source Can be external or internal. Internal uses the BERT internal clock (default).
External uses a clock connected from an external source to the BERT. External
Rx clock source is not currently supported. Set Rx clock to internal and it will
track the Tx clock source (either internal or external) that is set above.

Rx Clock
Frequency

This field is only active when either Tx or Rx is set to External. Specifies the
desired bit rate clock . For bit rates where 2.5 GHz ≤ f ≤ 3.3 GHz, you must inject
a clock at double the rate. For example, to use 2.7 Gb/s, the user must provide
a 5.4 GHz clock at the TX-CLK-IN inputs.

Tx Invert Transmit signal polarity is inverted if this box is checked. (default - not inverted)

Rx Invert Receive signal polarity is inverted if this box is checked. (default - not inverted)

3-12

Using the Control Panel
Measuring Bit Error Rate

4 Click on Start to begin the BER measurement. When the measurement is
complete, the Control Panel displays the error rate.

Jitter Frequency Specifies the frequency in Hz (0 to 10 MHz max, 10 kHz typical) (default = 0).
This feature injects jitter at an uncalibrated rate and is not fully characterized.
It is provided to the customer on an "As is" basis.

Jitter Amplitude Specifies the amplitude in UI DAC units (255 is typically 0.2 UI max) (default =
0) . This feature allows the user to inject DJ into the transmitted signal. Agilent
has not characterized nor calibrated this function. It is provided "As Is"

Tx Amplitude
(mV)

Amplitude of transmit signal specified in millivolts. (default = 1000 mV)

Phase Delay This option is used to specify a phase delay between the signal and receiver
clocks. The range of the programmable phase delay is 1.2 ns specified in 1023
increments. This option holds the number of such increments. (default= 0)

Error Insert Allows user to inject errors into data pattern, can select: Single burst of K
errors: where K is user specified. Continuous (Rates of 10^-N for N = 3 to 10).
None (Default)

Clock trigger Clock Trigger is a divided down version of the transmit clock. Can be set to
either of the following Div8 (default), Div9, RefClk - 106.25, 155.52, or 156.25
MHz depending on bit rate as shown in Table 3-1 on page 3-13.

Pattern Trigger Can be set to either of the following Pattern (generates a trigger pulse
synchronous with the transmitted pattern (Default). Div128 (Generates a
divided down version of the bit rate clock

Window Size Specifies a time window during which the BER is measured (Default = 250 ms)

3-13

Using the Control Panel
Measuring Bit Error Rate

Table 3-1. Clock Trigger Output Frequency Options

Internal Bit Rate Clock
(Gbps)

Div 8
(MHz)

Div 9
(MHz)

RefClk
(MHz)

1.0625 132.81 118.06 106.25

1.25 156.25 138.89 156.25

2.125 265.63 236.11 106.25

2.48832 311.04 276.48 155.52

2.50 312.50 277.78 156.25

4.25 531.25 472.22 106.25

5.00 625.00 555.56 156.25

3-14

Using the Control Panel
Upgrading the Instrument’s Firmware

Upgrading the Instrument’s Firmware

Your new N2101A is compatible with the current version of the control panel
software. If your PXI chassis includes older N2101A (PX2000-336) instru-
ments, you may need to upgrade the firmware in those older instruments as
described in this section. To update the firmware and execute the FPGA
Loader program, perform the following steps:

1 Close any open Control Panels.

2 On the Windows Start menu, click All Programs, PXIT, PX2000-336, PX2000-
336 FW-FPGA Loader.

3 Press the appropriate buttons to connect to a given module, and note the
current module Serial Number, API, and Firmware Versions.

4 Select the new firmware and FPGA files located in the installation directory
(typically C:\Program Files\PXIT\PX2000-336\fw), and press start.

A progress bar appears as the module is updated.

5 Once complete, shut down the host PC and cycle the power on the PXI chassis.

6 After rebooting the PC, connect to the module and obtain Module
Configuration, to confirm proper software upload.

4

Introduction 4-2
Configuring the Traffic Generator 4-3

Transmitter External Clocking Configuration Example 4-5
Generate Internally Clocked 4.25Gb/s PRBS-7 Example 4-6

Configuring the Signal Receiver 4-7
Receiver Configuration Example 4-8

Configuring the Trigger Outputs 4-9
Making Measurements 4-10

Bit Error Rate Measurement 4-10
Eye Opening Measurement 4-10
Bathtub Measurement 4-12
Time Window Measurement 4-12

Generating Traffic Errors 4-14
Jitter Insertion 4-15
Obtaining the N2101A VISA Handle 4-16
DLL API Reference 4-18
Data Types and Structures 4-26

Programming

4-2

Programming
Introduction

Introduction

A Dynamic Link Library (DLL) provides an API through which custom appli-
cations can be easily developed for the N2101A. For further ease of program-
ming and compatibility, an Active-X Control is also provided to access the
N2101A. The Active-X Control extends programmability to any Active-X con-
tainer application or COM compliant programming environment. This
includes Visual C++, Visual Basic, C#, LabView and many other environments.
The Active-X methods are listed in the Active-X Programmer's Guide which is
installed with the software.

The general sequence of operation needed to perform a bit error measure-
ment is as follows:

1 Configure the traffic generator. Refer to “Configuring the Traffic Generator” on
page 4-3.

2 Configure the receiver. Refer to “Configuring the Signal Receiver” on page 4-7.

3 Select the type of measurement to be carried out and execute it. Making
Measurements 4-10.

4-3

Programming
Configuring the Traffic Generator

Configuring the Traffic Generator

Calling the function PXIT336ConfigureTx() configures the traffic generator.
The first parameter is a VISA handle that identifies the instrument to be con-
figured. Refer to “Obtaining the N2101A VISA Handle” on page 4-16. The com-
plete configuration of the traffic generator is passed as the second parameter
to this function, with the following options:

Bit Rate Specifies the bit rate of the generated signal. The possible values are:

• 1.0625 Gb/s,
• 1.25 Gb/s,
• 2.125 Gb/s,
• 2.48832 Gb/s,
• 2.50 Gb/s,
• 4.25 Gb/s,
• 5.00 Gb/s

Pattern Specifies the Pattern of the generated signal. The pattern can be one of 3
types: PRBS, DC, or User. Each pattern type has further parameters specific
to its type.

Tx clock source and
frequency

Can be external or internal. Internal uses the BERT internally generated
clock, and will match the Bit Rate indicated above. External uses a clock con-
nected from an external source to the BERT. In this mode, the bit rate is
derived from the TX-CLK-IN input into the module. Depending on the exter-
nal frequncy specified, the BERT may be required to operate in "Double
Clocking Mode". The extern clock will have to be 2x the desired bit rate clock
(e.g. 5.4 Ghz for 2.7 Gb/s rate).

Signal Amplitude Output signal amplitude specified in mV. The actual output range of the
N2101A is from 500 mV to 2V. Requesting the output signal amplitude to be
set below the minimum will result in the output signal being set to 500 mV.
Requesting a value above the output amplitude range's maximum will result in
the output amplitude being set to 2V. The resolution of the output signal is 5
mV.

4-4

Programming
Configuring the Traffic Generator

Injected Errors Specifies the type of errors to inject if any. Refer to “Jitter Insertion” on page
4-15.

Data Invert Allows to invert the transmit signal.

Pattern Type The following parameters are used to specify the data pattern type.

PRBS pattern lengths can be one of:

• PRBS 27-1,
• PRBS 29-1,
• PRBS 211-1,
• PRBS 215-1,
• PRBS 223-1,
• PRBS 231-1.

DC pattern type can be one of the following:

• K28.5
• K28.7,
• CRPAT,

A user pattern is defined by a handle to the file containing the pattern and the
pattern length. Refer to “BertUserPattern” on page 4-27.

4-5

Programming
Transmitter External Clocking Configuration Example

Transmitter External Clocking Configuration Example

#include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

main ()
{
 ConfigureTheTransmitter();
}

void ConfigureTheTransmitter(void)
{
 ViSession instHandle; VISA handle for the BERT.
 BertTxConfigExt txConfigExt; BERT transmitter
configuration.
 PXIT336GetInstHandle(&instHandle, 0); Get the VISA
instrument handle to the first BERT module found in the system.
 if (instHandle != NULL)
 {
//select the clock source.
 txConfigExt.ClkSrc = 1;
 txConfigExt.ClkRef = 2500.0;
 txConfigExt.Pattern.Type = DC;
 txConfigExt.Pattern.DcPattern = K28dot7;select data
pattern.
 txConfigExt.DataInvert = 1;data inversion
 txConfigExt.Amplitude = 500;in millivolts
//Instruct the BERT to use the new transmitter parameters.
 PXIT336ConfigureTxExt(instHandle, &txConfigExt);
 }
}

4-6

Programming
Generate Internally Clocked 4.25Gb/s PRBS-7 Example

Generate Internally Clocked 4.25Gb/s PRBS-7 Example

#include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

main ()
{
 GeneratePRBS7();
}

void GeneratePRBS7(void)
{
 ViSession instHandle; VISA handle for the BERT.
 BertTxConfig txConfig; BERT transmit configuration.

 PXIT336GetInstHandle(&instHandle, 0);Get the VISA instrument
handle to the first BERT module found in the system.
 if (instHandle != NULL)
 {
 PXIT336Reset(instHandle);Reset the BERT module.
 PXIT336GetTxConfig(instHandle, &txConfig); Get the current
BERT transmit configuration.
 txConfig.BitRate = _4dot25_Gbps;
 txConfig.Pattern.Type = PRBS;
 txConfig.Pattern.PrbsLength = PRBS_7;Set the BERT
configuration to generate a PRBS 7 pattern.
PXIT336ConfigureTx(instHandle, &txConfig);Instruct the BERT to
use the new transmit parameters.
 }
}

4-7

Programming
Configuring the Signal Receiver

Configuring the Signal Receiver

Calling the function PXIT336ConfigureRx configures the BERT receiver. The
first parameter is a VISA handle identifying the BERT module to configure.
Refer to “Obtaining the N2101A VISA Handle” on page 4-16. A pointer to an
instance of the BertRxConfig structure is passed as second parameter. The
content of the BertRxConfig structure fully defines the configuration to be
applied to the BERT's receiver.

Bit Rate Specifies the bit rate of the generated signal. Refer to “BertBitRate” on page
4-26 for values. The possible bit rates are:

• 1.0625Gb/s,
• 1.25Gb/s,
• 2.125Gb/s,
• 2.48832Gb/s,
• 2.50Gb/s,
• 4.25Gb/s,
• 5.00Gb/s

Pattern Specifies the Pattern of the of the signal to receive. The pattern can be one of
3 types: PRBS, DC, or User. Each pattern type has further parameters specific
to its type.

Rx Clock Source Can be external or internal. Internal uses the BERT internal clock. (Default).
External uses a clock connected from an external source to the BERT. Exter-
nal Rx clock source is not currently supported. Set to Internal, the Rx clock
will track the Tx clock source set above.

Data Invert This option allows inverting the received signal.

Phase Delay This option is used to specify a phase delay between the signal and receiver
clocks. The range of the programmable phase delay is 1.2 ns specified in 1023
increments. This option holds the number of such increments. Refer to
“PXIT336SetRxPhaseDelay” on page 4-22 for more detail.

4-8

Programming
Receiver Configuration Example

Receiver Configuration Example

#include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

main ()
{
 ConfigureTheReceiver();
}

void ConfigureTheReceiver(void)
{
 ViSession instHandle; VISA handle for the BERT.
 BertRxConfig rxConfig; BERT receiver configuration.
 PXIT336GetInstHandle(&instHandle, 0); Get the VISA
instrument handle to the first BERT module found in the system.
 if (instHandle != NULL)
 {
//select the receiver's clock source.
 rxConfig.UseExternalClkSrc = Internal;
 rxConfig.BitRate = _1dot25_Gbps;select the receiver's
bit rate.
 rxConfig.Pattern.Type = DC;
 rxConfig.Pattern.DcPattern = K28dot7;select the receiver
pattern.
 rxConfig.DataInvert = 0;no data inversion
 rxConfig.PhaseDelay = 0;no phase delay
//Instruct the BERT to use the new receiver parameters.
 PXIT336ConfigureRx(instHandle, &rxConfig);
 }
}

4-9

Programming
Configuring the Trigger Outputs

Configuring the Trigger Outputs

There are two trigger outputs on the N2101A: Clock Trigger and Pattern Trig-
ger. Clock trigger is a divided down version of the internal bit rate clock. It can
be set to one of three settings: Transmit clock divided by 8, transmit clock
divided by 9, or internal PLL reference clock. Note that in external double
clocking mode, the divide by 8 and divide by 9 are referenced to the doubled
clock input. Refer to “PXIT336SetClockTrigger” on page 4-22. Pattern trigger
can be programmed to generate a pulse at the start of the transmit pattern or
toggle every 128 bits. Refer to “PXIT336SetPatternTrigger” on page 4-23.

4-10

Programming
Making Measurements

Making Measurements

Bit Error Rate Measurement

Used to measure the bit error rate, BER is defined as the ratio of the number
of errors detected to the total number of received bits.

Procedure

1 Configure the traffic generator by calling the function
PXIT336ConfigureTxExt().

2 Configure the receiver by calling the function PXIT336ConfigureRx().

3 Select the type of measurement to be carried out by calling the function
PXIT336StartMeasure().

4 Wait for the measure to be completed by polling the BERT's status using
PXIT336GetStatus(). Alternatively you can set a call back function to be called
on completion of the measure, as one of the parameters to the
PXIT336StartMeasure() function.

5 Read the measure result(s) by calling the function
PXIT336GetBitErrorCount() if only one bit error count result is expected. For
measures resulting in a series of bit error count results, inspect the result data
structure passed as parameter to PXIT336StartMeasure().

Results A structure of the type BertBitErrorCount, this contains the number of error
bits and the total transmitted bits.

Eye Opening Measurement

Used to measure the eye opening for a specified BER value.

4-11

Programming
Eye Opening Measurement

Parameters This measurement only takes two parameters the bit error rate (BER) value
for which to determine the eye opening and a pointer to a function that will be
called once the eye opening has been determined. See example code below.

Results A structure of the type BertEyeOpening. The eye opening result is given in
picoseconds.

Example #include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

void EyeOpeningMeasureExample(void);
Double eyeOpeningResult; Variable to store eye opening
main ()
{
EyeOpeningMeasureExample();
 printf("Eye opening: %d ps", eyeOpeningResult);
}

void EyeOpeningMeasureExample(void)
{
 ViSession instHandle; VISA handle for the BERT.
 PXIT336GetInstHandle(&instHandle, 0);Retrieve instrument
handle

 BertEyeOpeningParam eyeOpeningParameters;

// Indicate specific values for the eye opening search.
 eyeOpeningParameters.BathtubParam = [… desired values];

// Specify the bit error rate for which to measure the eye
opening.
 eyeOpeningParameters.TargetBer = 0.0001;
// Indicate where to store the measurement results.
 eyeOpeningParamers.pEyeOpening = &eyeOpeningResult;
// Initiate the eye opening measurement.
 PXIT336StartMeasure(instHandle, EyeOpening,
&eyeOpeningParameters);
}

4-12

Programming
Bathtub Measurement

Bathtub Measurement

This measurement is used to generate a Bathtub diagram with the phase delay
on the X-axis and the bit error rate on the Y-axis. The phase resolution and
number of measured points are configurable.

Parameters The input parameters for this measurement are as follows:

• Phase increment. This is the number of phase delay increments between each
individual measure points. This is the resolution on the X-axis of the Bathtub
diagram.

• Window size. This is the maximum length of time spent measuring the bit error
count at each phase delay intervals. The actual window size can be shorter de-
pending on the BER detected. This window size is specified in microseconds
(1.0E-06 seconds).

• Call back function. This is a pointer to a function called on completion of the
Bathtub measure.

• Number of measure points. This is the total number of measure points to be in-
cluded in the Bathtub curve.

Results An array of structures of type BertMeasurePoint. Please note that it is the
caller's responsibility to allocate the memory for this array.

Time Window Measurement

This measurement is used to report the bit error rate in a sliding time window.
A call to PXIT336GetBitErrorCount() will report the number of bit errors dur-
ing the last elapsed time window when using this measure type. The time win-
dow is specified in microseconds. It has a range of 0 to 221 seconds. A call
back function can optionally be called at the end of every measurement win-
dow.

Parameters This measurement only takes two parameters. The first parameter is the win-
dow size specified in microseconds. The second parameter is a pointer to a
function that will be called every time a new measurement is ready. This
pointer can be set to NULL if you don't wish to use this feature.

4-13

Programming
Time Window Measurement

Results A structure of the type BertBitErrorCount. This variable contains the number
of bit errors and the number of compared bits. The bit error rate can be
derived from these by dividing the number of bit errors with the number of
compared bits.

4-14

Programming
Generating Traffic Errors

Generating Traffic Errors

Errors can be injected in the traffic generator output by calling
PXIT336InsertError() with a pointer to a structure of type BertErrorInsert.
Continuous rate injection can be turned off by setting the style to NoErrors.
Each call with style of singleBurst will inject Count bit errors.

Configuration Option Style. Specifies the style of error insertion. Possible values are: NoErrors, Sin-
gleBurst, Continuous.

Rate. Specifies the rate at which errors should be inserted.

Count. Specifies the number of errors to be inserted for each call to this func-
tion.

4-15

Programming
Jitter Insertion

Jitter Insertion

Although not supported, this feature is provided for users to characterize their
equipment under test. The output signal characteristics are not fully defined.
Deterministic Jitter can be inserted onto the data output and clock signals.
The rate of jitter (frequency up to 10MHz) and amplitude in time (about 20%
of UI), can be varied using the control panel and the API. Refer to
“PXIT336SetJitterFrequency” on page 4-25 and “PXIT336SetJitterAmplitude”
on page 4-25. The magnitude of this jitter is not calibrated nor fully character-
ized at this time. Jitter can only be inserted on the internal clock source.

Configuration Option Frequency. Specifies the frequency in Hz (10 MHz max). Typical values are 10
kHz. Represents the rate of frequency modulation of the nominal bit rate
clock.

Amplitude. Specifies DJ amplitude in DAC units (255 max). Uncalibrated, but
typically 0.2 UI max.

4-16

Programming
Obtaining the N2101A VISA Handle

Obtaining the N2101A VISA Handle

All calls to the BERT API take a VISA handle as first parameter. This handle
identifies the module to be accessed by the function call. This handle can be
obtained by directly using the VISA API.

The VISA handle can also be obtained by calling the function
PXIT336GetInstHandle(). The first parameter to this function call is a pointer
to the location where the VISA handle will be stored. The second parameter is
used to enumerate the BERT modules present in the system. Setting this sec-
ond parameter to 0 results in the VISA handle of the first BERT module
detected in the system to be returned. Incrementing this parameter in subse-
quent calls will return the VISA handle of other BERT modules detected in the
system.

All BERT modules present in the system can be enumerated by calling
PXIT336GetInstHandle in a loop. Incrementing the value of the second param-
eter until the VISA handle returned is NULL will allow to obtain a VISA handle
for each BERT module present in the system.

Example 1 Obtain the VISA handle of the first or only BERT module present in the sys-
tem and reset it.

#include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

main ()
{
 ViSession instHandle; VISA handle for the BERT.
 PXIT336GetInstHandle(&instHandle, 0);Retrieve instrument
handle
 if (instHandle != NULL)
 {
 PXIT336Reset(instHandle);Reset the BERT module
 }
 }

Example 2 Enumerate all the BERT modules present in the system and reset them.

#include <stdlib.h>
#include <windows.h>
#include <pxit336.h>

4-17

Programming
Obtaining the N2101A VISA Handle

main ()
{
ViSession instHandle; VISA handle for the BERT.
int inc;define local variable
 inc = 0;
 do
 {
// Obtain the VISA handle for the Nth BERT module.
 PXIT336GetInstHandle(&instHandle, inc++);
 if (instHandle != NULL)
 {
// Reset the BERT module identified by VISA handle insHandle.
 PXIT336Reset(instHandle);
 }
 } while(instHandle != NULL);
}

4-18

Programming
DLL API Reference

DLL API Reference

This section documents the functions that are included in the DLL. Table 4-1
specifies bits 16 to 31 of the methods return values. You should mask off the
lowest 16 bits of the return values before to compare it to one of the major
error codes described in this table. Bits 16-31 of the errors codes may contain
info about the cause of the error.

Table 4-1. Function Return Codes

Mnemonic Value Description

SUCCESS 0x00000000 Operation completed successfully.

UNEXPECTED_ERROR 0x00010000 Unexpected error. Contact support with a description of how this error
occurred.

MEASURE_IN_PROGRESS_E
RROR

0x00020000 The requested operation cannot be completed because there is a
measurement currently running. Try calling the StopCurrentMeasure() method
before retrying.

UNKNOWN_DEVICE 0x00030000 The instrument handle used is not recognised as a valid handle. Make sure
there is at least one PATTERN GENERATOR present in the system, that the
PXI chassis is powered up and that the PC has been rebooted after the
chassis was powered up.

INVALID_PARAMETER 0x00040000 One of the parameters passed to the method is invalid or is not supported by
the revision of hardware present in the system.

BOARD_REGISTER_ERROR 0x00050000 Cannot access the N2101A board registers. Power cycle the system. Contact
support if problem persists.

BOARD_DEVICE_ERROR 0x00060000 Cannot access one of the devices present on the board. Usually happens
when one of the I2C devices present on the board is not responding. Bits 0-7
contain the bus address and bits 8-15 contain the bus number of the device
causing the error.

4-19

Programming
DLL API Reference

PXIT336GetInstHandle
Obtains a VISA handle identifying a BERT module detected in the system.
This handle is stored in the location passed as parameter. The content of this
location is set to NULL if no BERT module was detected for the specified
index.

Function Prototype int PXIT336GetInstHandle(ViSession *instHandle, int index);

instHandle Pointer to the location where the VISA handle of the first BERT module
detected in the system will be stored.

index Index of BERT module for which a VISA handle is requested. This index starts
at 0 and can be incremented after each call to PXIT336GetInstHandle to enu-
merate all the BERT modules present in the system.

PXIT336Reset
Resets the BERT hardware. The traffic generator and receiver are configured
to a known "sensible" state that can be retrieved by calls to
PXIT336GetTxConfig or PXIT336GetRxConfig.

Function Prototype int PXIT336Reset(ViSession inst);

inst VISA handle of the BERT module to be reset.

PXIT336GetHardwareVersion
Reads the BERT hardware version number.

Function Prototype int PXIT336GetHardwareVersion(ViSession inst, BertVersion *versionNb);

inst VISA handle of the BERT module from which to read the hardware version.

versionNb Pointer to a BertVersion variable into which the function will write the hard-
ware version number.

PXIT336GetSoftwareVersion
Reads the BERT software version number.

Function Prototype void PXIT336GetSoftwareVersion(BertVersion *versionNb);

4-20

Programming
DLL API Reference

versionNb Pointer to a BertVersion variable into which the function will write the soft-
ware DLL version number. The verision number is represented as a 32 bit inte-
ger. For example, 0x02050A00 corresponds to version 2.5.10.0.

PXIT336GetStatus
Returns the current status of the BERT.

Function Prototype int PXIT336GetStatus(ViSession inst,BertStatus *status);

inst VISA handle of the BERT module from which to read the hardware version.

status A pointer to an instance of BertStatus where the status of the BERT will be
stored.

PXIT336GetTxConfig
Retrieve the current configuration of the transmit part of the BERT.

Function Prototype int PXIT336GetTxConfig(ViSession inst, BertTxConfig *txConfig);

inst VISA handle of the BERT module from which to read the configuration.

txConfig Pointer to an instance of BertTxConfig. Points to the location where the trans-
mit configuration will be stored.

PXIT336GetRxConfig
Retrieve the current configuration of the receive part of the BERT.

Function Prototype int PXIT336GetRxConfig(ViSession inst, BertRxConfig *rxConfig);

inst VISA handle of the BERT module from which to read the configuration.

rxConfig Pointer to an instance of BertRxConfig where the current receive configura-
tion will be stored.

PXIT336ConfigureTx
Configures the transmitter, including the bit rate, generated data pattern, and
signal amplitude settings.

Function Prototype int PXIT336ConfigureTx(ViSession inst, BertTxConfig *txConfig);

inst VISA handle of the BERT module to configure.

4-21

Programming
DLL API Reference

txConfig Pointer to an instance of BertTxConfig containing the new transmitter config-
uration to be applied.

PXIT336ConfigureTxExt
Configure the transmitter. This function extends the PXIT336ConfigureTx
capabilities to support external clock sourcing. For new programs use this API
for all transmitter configurations.

Function Prototype int PXIT336ConfigureTxExt(ViSession inst, BertTxConfigExt *txConfigExt);

inst VISA handle of the BERT module to configure.

txConfigExt Pointer to an instance of BertTxConfigExt containing the new transmit config-
uration to be applied.

PXIT336SetTxAmplitude
Specifies the amplitude of the pattern generator output. The amplitude is
specified in millivolts.

Function Prototype int PXIT336SetTxAmplitude(ViSession inst, unsigned long amplitude);

inst VISA handle of the BERT module to configure.

amplitude Output signal amplitude specified in millivolts.

PXIT336InsertError
Inserts errors into the transmitted bit stream. NoErrors, SingleBurst, and Con-
tinuous Rate of errors may be specified. Constant bit error rate injection will
remain on until this function is called again with a different setting, or the
transmitter is reinitialized. For single burst errors, each call to this function
will insert the specified number of errors. To turn off continuous bit error rate
injections, call this function with the style NoErrors.

Function Prototype int PXIT336InsertError(ViSession inst , BertErrorInsert *pErrorInsert);

inst VISA handle of the BERT module to configure.

pErrorInsert Pointer to an instance of BertErrorInsert structure describing the error inser-
tion to be applied.

PXIT336GetErrorInsertCfg
Retrieves the current error insertion configuration.

4-22

Programming
DLL API Reference

Function Prototype int PXIT336GetErrorInsertCfg(ViSession inst, BertErrorInsert *pErrorInsert);

inst VISA handle of the BERT module to configure.

pErrorInsert Pointer to an instance of a BertErrorInsert structure where the current error
insertion configuration will be stored when this function returns.

PXIT336ConfigureRx
Configures the receive block.

Function Prototype int PXIT336ConfigureRx(ViSession inst, BertRxConfig *rxConfig);

inst VISA handle of the BERT module to configure.

rxConfig Pointer to an instance of BertRxConfig containing the receive configuration to
be applied.

PXIT336SetRxPhaseDelay
Specifies the receive phase delay.

Function Prototype int PXIT336SetRxPhaseDelay(ViSession inst, double dPhaseDelay);

inst VISA handle of the BERT module to configure.

dPhaseDelay Specifies the phase delay in picoseconds to be applied.

PXIT336SetClockTrigger
Selects the configuration of the Clock Trigger output. The Clock Trigger out-
put is a divided version of the transmit clock. It can be a divide by 8 or divide
by 9 version of the transmit clock. If RefClk is selected, the output is the inter-
nal PLL frequency, which is specified by the following table.

4-23

Programming
DLL API Reference

Function Prototype int PXIT336SetClockTrigger(ViSession inst, BertClockDivTrigger clkTrigCfg);

inst VISA handle of the N2101A module to configure.

clkTrigCfg Specifies the divider ratio for the Clock Trigger output. This ratio can be div8,
div9, or RefClk.

PXIT336GetClockTrigger
Retrieves the current configuration of the clock trigger output.

Function Prototype int PXIT336GetClockTrigger(ViSession inst, BertClockDivTrigger *clkTrigCfg);

inst VISA handle of the BERT module to configure.

clkTrigCfg Pointer to an instance of BertClockDivTrigger where the clock trigger configu-
ration will be stored when this function returns.

PXIT336SetPatternTrigger
Selects the configuration of the Pattern trigger output. The PAT-TRIG-OUT on
the PX2000-336 module can output a single bit pulse synchrized with the data
pattern. The Pattern Trigger output can also be set to the bit rate clock
divided by 128.

Function Prototype int PXIT336SetPatternTrigger(ViSession inst, BertPatternTrigger patTrigCfg);

Table 4-2. Clock Trigger Output Frequency Options

Internal Bit Rate Clock
(Gbps)

Div 8
(MHz)

Div 9
(MHz)

RefClk
(MHz)

1.0625 132.81 118.06 106.25

1.25 156.25 138.89 156.25

2.125 265.63 236.11 106.25

2.48832 311.04 276.48 155.52

2.50 312.50 277.78 156.25

4.25 531.25 472.22 106.25

5.00 625.00 555.56 156.25

4-24

Programming
DLL API Reference

Inst VISA handle of the BERT module to configure.

patTrigCfg Specifies the type of triggering desired. Value of 0 indicates that the Pattern
Trigger output will pulse at the beginning of each repetition of the transmit
pattern. The Pattern Trigger's pulse rate is then dependant on the length of
the PRBS or user pattern generated on the transmit output. Value of 1 will
generate a divide by 128 version of the clock.

PXIT336GetPatternTrigger
Retrieves the current configuration of the pattern trigger output.

Function Prototype int PXIT36GetPatternTrigger(ViSession inst, BertPatternTrigger *patTrigCfg);

inst VISA handle of the BERT module to configure.

patTrigCfg Pointer to a BertPatternTrigger instance where the configuration of the pat-
tern trigger output will be stored when this function returns.

PXIT336StartMeasure
Starts a measurement. The measurement type is defined by the measurement
descriptor passed as second parameter.

Function Prototype int PXIT336StartMeasure(ViSession inst, BertMeasureType bertMeasureType, BertMeasure
*pMeasureParam);

inst VISA handle of the BERT module to be used.

bertMeasureType Type of measurement to be executed

pMeasureParam Pointer to an instance of BertMeasureParam. Points the structure describing
the measurement to be carried out.

PXIT336GetBitErrorCount
Reads the current bit error count. It stores the number of bit errors and the
number of compared bits in the structure pointed to by the second parameter.
This function is typically used to get the result of a measurement initiated by a
call to PXIT336StartMeasure.

Function Prototype int PXIT336GetBitErrorCount(ViSession inst, BertBitErrorCount *errorCount);

inst VISA handle of the BERT module to read the bit error count from.

4-25

Programming
DLL API Reference

errorCount Pointer to an instance of the bit error count. Specifies where the bit error
count is to be stored.

PXIT336SetJitterFrequency
Sets the frequency of the inserted jitter. Not calibrated.

Function Prototype int PXIT336SetJitterFrequency(ViSession inst, int frequency);

inst VISA handle of the BERT module to configure.

frequency Frequency in Hz of the inserted Jitter. Uncalibrated!

PXIT336GetJitterFrequency
Gets the frequency of the inserted jitter.

Function Prototype int PXIT336GetJitterFrequency(ViSession inst, int *frequency);

inst VISA handle of the BERT module to configure.

frequency Pointer which specifies where the inserted jitter Frequency value is to be
stored.

PXIT336SetJitterAmplitude
Sets the amplitude of the inserted jitter. This is feature is not supported by
PXIT and is provided "As Is".The percentage of the eye width that is affected
by the inserted DJ is uncalibrated. Units are in DAC steps (255 max).

Function Prototype int PXIT336SetJitterAmplitude(ViSession inst, int amplitude);

inst VISA handle of the BERT module to configure.

amplitude Amplitude (in DAC units 0 to 255) of the inserted Jitter. This is uncalibrated.

PXIT336GetJitterAmplitude
Gets the current amplitude setting of the inserted jitter.

Function Prototype int PXIT336GetJitterAmplitude(ViSession inst, int *amplitude);

inst VISA handle of the BERT module to configure.

amplitude Pointer which specifies where the inserted jitter amplitude (DAC units) is to
be stored.

4-26

Programming
Data Types and Structures

Data Types and Structures

This section specifies the data structures used in the API. For the latest infor-
mation, refer to the include file pxit336.h provided in the release package.

BertBitRate
This enumeration defines the different bit rates supported.

typedef enum
{
 _1dot0625_Gbps = 0,
 _1dot25_Gbps,
 _2dot125_Gbps,
 _2dot48832_Gbps,
 _2dot66_Gbps,
 _4dot25_Gbps,
 _2dot500_Gbps,
 _5dot0_Gbps
} BertBitRate;

BertPattern
This data structure is used to individually describe transmit and receive pat-
terns. All parameters to define transmit and receive patterns are included in
this structure. This structure is typically used to specify the traffic generator
and receiver's configuration.

typedef struct
{
 BertPatternType Type;
 Union
 {
 BertPrbsLength PrbsLength;
 BertDcPattern DcPattern;
 BertUserPattern UserPattern;
 };
} BertPattern;

BertPatternType
This enumeration defines the three possible pattern types supported by the
BERT.

typedef enum
{

4-27

Programming
Data Types and Structures

 PRBS,
 DC,
 User
} BertPatternType;

BertPrbsLength
This enumeration defines the PRBS pattern lengths supported.

typedef enum
{
 PRBS_7,
 PRBS_9,
 PRBS_11,
 PRBS_15,
 PRBS_23,
 PRBS_31
} BertPrbsLength;

BertDcPattern
This enumeration defines the DC patterns supported.

typedef enum
{
 K28dot5 = 0,
 K28dot7,
 CRPAT,
 GBETESTPAT
} BertDcPattern;

BertUserPattern
This structure is used to define a user pattern. It is used to specify the buffer
in which the user pattern is stored and the bit length of that pattern.

typedef struct
{
 unsigned long * BitPattern;
 int BitSize;
} BertUserPattern;

BertTxConfig
This data structure describes the traffic generator's configuration. It is sup-
ported for legacy applications, and is superseded by BertTxConfigExt()
below.

typedef struct
{
 BertBitRate BitRate;
 BertPattern Pattern;
 unsigned long Amplitude;
 bool DataInvert;
 bool UseExternalClkSrc; //internal only (=0)
} PXIT336TxConfig;

4-28

Programming
Data Types and Structures

BertTxConfigExt
This is an extended version of BertTxConfig structure defined above that
includes the external clock reference frequency field. It is used as a parameter
to the PXIT336ConfigureTxExt() and PXIT336GetTxConfigExt functions and
is the recommended method for transmitter configuration in either clocking
mode.

typedef struct
{
 BertBitRate BitRate;
 float fBitRate;
 BertPattern Pattern;
 unsigned long Amplitude;
 bool DataInvert;
 PXITBERT_CLKSRCS ClkSrc;
 float ClkRef;
 float ExtLSBitrates[PXITBERT_NLSREFS];
} BertTxConfigExt;

BertRxConfig
This structure is used to fully describe the receiver configuration. This data
structure is typically used as a parameter for PXIT336ConfigureRx and
PXIT336GetRxConfig calls.

typedef struct
{
 BertBitRate BitRate;
 BertPattern Pattern;
 bool DataInvert;

BitRate Transmitter bit rate.

fBitRate Transmitter bit rate in MHz

Pattern Describes the transmitted data pattern. See through above for further details

Amplitude Output signal amplitude specified in millivolts.

DataInvert Data pattern signal polarity. TRUE causes the output data pattern to be inverted.

ClkSrc Selects the clock source. 0 is internal, 1 is external. Other values are reserved for
future use.

ClkRef Specifies the data bit rate (in Mb/s) derived from the external clock input. In exact
clocking mode, this is equal to the external reference clock input. In double clocking
mode, this will be one-half of the supplied clock (e.g. 2720.0 would required a 5.44
GHz external clock input).

4-29

Programming
Data Types and Structures

 double PhaseDelay;
 bool UseExternalClkSrc;
} PXIT336RxConfig;

BertErrorInsert
This structure is used to fully decribe errors to be injected into the traffic gen-
erator's output.

typedef struct
{
 BertErrorInsertStyle Style;
 BertErrorRate Rate;
 BertErrorCount Count;
} BertErrorInsert;

BertErrorInjectStyle
This enumeration defines the style of error injection supported by the BERT.

typedef enum
{
 NoErrors,
 SingleBurst,
 Continuous
} BertErrorInsertStyle;

BertErrorRate
This type is used to specify the rate at which errors will be injected into the
traffic generator's output when the BertErrorInjectStyle is set to Continuous.

typedef enum
{
 TenMinus3 = 0,
 TenMinus4,
 TenMinus5,
 TenMinus6,
 TenMinus7,

BitRate Received signal expected bit rate. See BertBitRate for possible values.

Pattern Describes the expected receive pattern. See structures above for further
details on how to specify a pattern.

DataInvert Received signal invert. Setting this to TRUE causes the received signal to be
inverted before processing.

PhaseDelay Phase delay in picoseconds.

UseExternalCloc
kSource

 Selects the clock source. Must be set to FALSE for internal clocking.

4-30

Programming
Data Types and Structures

 TenMinus8,
 TenMinus9,
 TenMinus10
} BertErrorRate;

BertErrorCount
Specify the number of errors to inject during each burst when BertErrorIn-
jectStyle is SingleBurst.

typedef unsigned long BertErrorCount;

BertMeasureType
This structure is used to specify the type of measurement you wish the BERT
to carry out.

typedef enum
{
 None = 0,
 ClockDataAlign,
 FullSweep,
 TimeWindow,
 Bathtub,
 FastBathtub,
 EyeOpening,
} BertMeasureType;

BertMeasureParam
This structure is used in calling PXIT336StartMeasure and is used to store
configuration information specific to the type of measurement requested.

typedef union
{
 BertWindowParam WindowParam;
 BertBathtubParam BathtubParam;
 BertFullSweepParam FullSweepParam;
 BertClockDataAlignParam ClockDataAlignParam;
 BertEyeOpeningParam EyeOpeningParam;
 BertPonParam PonParam;
} BertMeasureParam;

BertWindowParam
This structure is used to specify the parameters of a Window BER measure-
ment.

typedef struct
{ unsigned long WindowLength;
 double * BER;
 unsigned long MaxNbErrors;
 unsigned long NbOfIterations;
 void (*StepCallback)(void);
 void (*CompletionCallback)(void);
} BertWindowParam;

4-31

Programming
Data Types and Structures

BertBathtubParam
This structure is used to specify a Bathtub measurement.

typedef struct
{
 BertBERMeasurePoint * pBerTable;
 unsigned long * pNbOfPoints;
 unsigned long PhaseResolution;
 unsigned long WindowLength;
 int MaxNbErrorPerPoint;
 void (*StepCallback)(void);
 void (*CompletionCallback)(void);

WindowLength Maximum length - in microseconds of the time window. The maximum
window length is 221 seconds. The length of time spent measuring the
BER can be shorter than specified by this parameter if a non-zero value is
specified for the "MaxNbError" parameter below. A value of zero
specifies an infinite window length. Step and completion callbacks are
never called if this parameter is set to 0 since the time window will
never expire.

BER Pointer to a type double were the bit error rate for the last elapsed time
window will be stored. It is the caller's responsibility to make sure that
this points to a valid memory location allocated by the caller. Can be set
to NULL.

MaxNbErrors Maximum number of bit errors after which the time window will elapse
regardless of the time length specified by "WindowLength". This allows
shortening the time window in instances where there are a large number
of bit errors. Can be set to 0 to leave the time window to run to its
maximum length regardless of the number of bit errors.

NbOfIterations Number of time window BER measures to perform. Can be set to 0 to
specify that an infinite number of time window BER measures must be
performed in succession.

StepCallback Pointer to a callback function specified by the caller. The function
specified by this pointer will be called every time a time window has
elapsed. It can be used to indicate that the variable pointed to by "BER"
has been updated. It is the caller's responsibility to ensure that this
points to a valid callback function. Can be set to NULL to indicate that
the caller does not wish to use a callback function.

CompletionCallback Pointer to a callback function specified by the caller. The function
identified by this pointer will be called when the number of time window
iterations specified by "NbOfIterations" has been reached.

4-32

Programming
Data Types and Structures

} BertBathtubParam;

PBerTable Pointer to an array of type BertBERMeasurePoint structures where the
Bathtub plot points will be stored. It is the caller's responsibility to allocate
enough memory for the plot to be stored.

PNbOfPoints Pointer to a variable containing the number of points making up the Bathtub
plot. This variable must contain the size of the array of type
BertBERMeasurePoint allocated by the caller and pointed to by pBerTable
on calling PXIT336StartMeasure(). This size must be given in number of
BertBERMeasurePoint instances that can be stored into the memory
pointed to by pBerTable. The variable pointed to by pNbOfPoints is updated
before each call to the callback functions (StepCallback and
CompletionCallback) to reflect the actual number of points making up the
Bathtub plot.

PhaseResolution Phase resolution in picoseconds of the Bathtub diagram. Specifies the
phase difference between each successive measurement points. This is
equivalent to the resolution on the X-axis of the Waterfall diagram.

WindowLength Maximum length in microseconds spent counting errors for each point of
the Bathtub plot. The maximum window length is 221 seconds. The length
of time spent counting errors can be shorter than specified by this
parameter if a non-zero value is specified for the 'MaxNbErrorPerPoint'
parameter below.

MaxNbErrorPerPoint Maximum number of bit errors after which the time spent counting errors at
a specific phase delay will elapse regardless of the time length specified by
'WindowLength'. This shortens the time it takes to plot a Bathtub measure
by reducing the amount of time spent counting errors for phase delays
where there is a high number of errors. Can be set to 0 to leave the time
window to run to its maximum length regardless of the number of bit errors.

StepCallback Pointer to a callback function specified by the caller. The function identified
by this pointer will be called every time a new point has been added to the
Bathtub plot. It is the caller's responsibility to ensure that this points to a
valid callback function. Can be set to NULL to indicate that the caller does
not wish to use a callback function.

CompletionCallback Pointer to a callback function specified by the caller. The function identified
by this pointer will be called when the Bathtub plot has been completed. It
is the caller's responsibility to ensure that this points to a valid callback
function. Can be set to NULL to indicate that the caller does not wish to use
a callback function.

4-33

Programming
Data Types and Structures

BertEyeOpeningParam
This structure is used to specify the parameters of an eye opening measure-
ment. The bathtubParam is defined above, and the targetBER is the desired
bit error rate. The result in picoseconds, is returned in *pEyeOpening.

typedef struct
{
BertBathtubParam BathtubParam;

double TargetBER;
double * pEyeOpening;

} BertEyeOpeningParam;

BertBitErrorCount
This structure is used to report a bit error count. The first item ErrorCount
contains the number of bit errors. The second item BitCount reports the num-
ber of bits over which the number of errors occurred. The bit error rate (BER)
can be derived from these two items by dividing ErrorCount with BitCount.
This structure is updated in real-time

typedef struct
{
 unsigned __int64 ErrorCount;
 unsigned __int64 BitCount;
} BertBitErrorCount;

BertMeasureStatus
typedef enum
{
 Success,
 Fail,
 Invalid,
 InProgress
} BertMeasureStatus;

BertStatus
typedef struct
{
 BertMeasureType Requested;
 BertMeasureStatus Status;
 bool TxClockLocked;
 bool RxClockLocked;
 bool RxSynched;
} BertStatus;

4-34

Programming
Data Types and Structures

5

Specifications

5-2

Specifications
Specifications

Specifications

The distinction between specifications and characteristics is described as fol-
lows:

• Specifications describe warranted performance over the temperature range
0° C to +40° C and relative humidity <95% (unless otherwise noted). All speci-
fications apply after the temperature of the probe and the probe adapter has
been stabilized after 30 minutes of continuous operation.

• Characteristics provide useful information by giving functional, but nonwar-
ranted, performance parameters. Characteristics are printed in italics.

Table 5-1. Transmit (Tx) Specifications

Output Jitter 1 ps rms

Rise/Fall Time (20-80%) 30 ps

Frequency Modulation
(jitter insertion)

0 to 10 MHz

Output Range 250 mV to 1.6V

Output Resolution 0.5 mV

Internal Clock Frequencies 1.0625 GHz, 1.25 GHz, 2.125 GHz, 2.48832 GHz, 2.50 GHz, 4.25 GHz, 5.00 GHz

External Clock Operation Range. Exact
Rate Clocking.a b

1.0 GHz ≤ f ≤ 2.5 GHz
4.0 GHz ≤ f ≤ 6.6 GHz

External Clock Operation Range.
Double Rate Clocking.c

2.5 GHz ≤ f/2 ≤ 3.3 GHz

Bit Error Insertion Single and multiple bit bursts, Continuous BER of 10-n (n = 3,4,5,6,7,8,9,10)

a. f = Input frequency
b. Clock range 2.5 GHz < f < 4.0 GHz is not supported.

5-3

Specifications
Specifications

c. Supply 2x of this rate. f = Input frequency

Table 5-2. Receive (Rx) Specifications

 Input Range 25 mV to 2V

Input Sensitivity 25 mV

Internal Clock Frequencies 1.0625 GHz, 1.25 GHz, 2.125 GHz, 2.48832 GHz, 2.50 GHz, 4.25 GHz, 5.00 GHz

External Rate Clock Operation Rangea b c 1.0 GHz ≤ f ≤ 1.5Hz
2.0 GHz ≤ f ≤ 2.5 GHz
4.0 GHz ≤ f ≤ 6.0 GHz

Delay range with External Clock 200 ps

a. f = Tx external input
b. The Rx Clocking must be set to Internal, and the receive path will track the Tx frequency (internal or external).
c. Clock ranges 1.5 GHz < f < 2.0 GHz and 2.5 GHz < f < 4.0 GHz are not supported.

Table 5-3. Trigger Output Specifications

Trig Clock Bit clock rate divided by 8, 9, or the internal PLL clock (refer to Table 5-4).

Pattern Trigger Synchronized to data pattern start, or the bit clock divided by 128.

Output Amplitude DC Coupled 500 mV

5-4

Specifications
Specifications

Table 5-4. Clock Trigger Output Frequency Options for Trig Clock Specifications

Internal Bit Rate Clock
(Gbps)

Div 8
(MHz)

Div 9
(MHz)

RefClk
(MHz)

1.0625 132.81 118.06 106.25

1.25 156.25 138.89 156.25

2.125 265.63 236.11 106.25

2.48832 311.04 276.48 155.52

2.50 312.50 277.78 156.25

4.25 531.25 472.22 106.25

5.00 625.00 555.56 156.25

Table 5-5. Environmental Specifications

Use indoor

Dimensions Three-slot PXI module

	Title Page
	General Information
	Introduction
	Electrostatic Discharge Information
	Connector Care
	Returning the N2101A to Agilent

	Installation
	Introduction

	Using the Control Panel
	Introduction
	Quick Confidence Check
	Measuring Bit Error Rate
	Upgrading the Instrument’s Firmware

	Programming
	Introduction
	Configuring the Traffic Generator
	Configuring the Signal Receiver
	Configuring the Trigger Outputs
	Making Measurements
	Generating Traffic Errors
	Jitter Insertion
	Obtaining the N2101A VISA Handle
	DLL API Reference
	Data Types and Structures

	Specifications

